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ABSTRACT
Fungi have a unique metabolic plasticity allowing them to pro-
duce a wide range of natural products. Since the discovery of 
penicillin, an antibiotic of fungal origin, substantial efforts have 
been devoted globally to search for fungal-derived natural bio-
active products. Andean region forests represent one of the 
few undisturbed ecosystems in the world with little human 
intervention. While these forests display a rich biological diver-
sity, mycological and chemical studies in these environments 
have been scarce. This review aims to summarise all the efforts 
regarding the chemical or bioactivity analyses of Agaricomycetes 
(Basidiomycota) from southern South America environments. 
Overall, herein we report a total of 147 fungal species, 21 of 
them showing chemical characterisation and/or biological activ-
ity. In terms of chemical cores, furans, chlorinated phenol deriv-
atives, polyenes, lactones, terpenes and himanimides have been 
reported. These natural products displayed a range of biological 
activities including antioxidant, antimicrobial, antifungal, neuro-
protective and osteoclast-forming suppressing effects.
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1.  Introduction

Fungi represent one of the largest groups of organisms (Dighton 2018). Recent 
estimations indicate there are 2.2–13.2 million species of fungi on our planet 
(Hawksworth and Lücking 2017; Kew RBG Wu et  al. 2019; Antonelli et  al. Baldrian 
et  al. 2022). To date, 120,000–148,000 species have been documented, mainly from 
Ascomycota (Wijayawardene et  al. 2017) and Basidiomycota (He et  al. 2022), which 
correspond to 3%–9% of the total pool of fungal species (Hawksworth and Lücking 
2017; Antonelli et  al). They are widely distributed across different ecosystems on 
our planet. In addition, these organisms are entirely heterotrophic as they are unable 
to perform photosynthesis (Webster and Weber 2007). Consequently, they have 
developed a unique metabolic plasticity allowing them to rapidly adapt and survive 
through the biosynthesis of an array of natural products (Sandargo et  al. 2019). 
Fungal-derived natural products are pharmaceutically prolific and have been devel-
oped into several important biological applications ranging from highly potent 
toxins to approved drugs. Fungi are vast and yet untapped sources for pharmaceu-
tically relevant molecules displaying a range of bioactivity including anticancer, 
antioxidant, hepatoprotective, antibacterial, antidiabetic and anti-inflammatory capa-
bilities (Hyde et  al. 2019).

Basidiomycota comprises approximately 40,000 spp. (He et  al. 2022) and presents 
ecologically diverse species (Põlme et  al. 2020). They can be saprophytes (Baldrian 
2006; Baldrian and Valášková 2008; Fukasawa 2021), parasites (Zhao et  al. 2019), 
mutualistic symbionts with insects (Li et  al. 2021b), green algae and cyanobacteria 
(Oberwinkler 2012), even these organisms can also form mycorrhizae with plants 
and trees (Tedersoo et  al. 2010, 2020; Tedersoo and Smith 2013; Rimington et  al. 
2020). Chile, which covers a great part of Andean region environments, hosts a 
large fungal diversity, accounting for approximately 4000 spp. (Instituto de Asuntos 
Públicos 2016). Almost half of them corresponds to Basidiomycota and even more 
are yet to be described (Boonmee et  al. 2021; Caiafa et  al. 2021; Garnica et  al. 
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2021; Nouhra et  al. 2021; Rajchenberg et  al. 2021). On the other hand, in 
Argentina,  between 1300 and 3600 species of fungi have been recorded accord-
ing  to Biodiversity Information System of the National Parks Administration 
(SIB 2022).

Andean region (also known as Andean-Patagonian dominion) represents one of 
the few undisturbed ecosystems in the world with little human intervention. 
According to Morrone (2018), the Andean region, for southern South America com-
prises the central Chilean, Subantarctic and Patagonian subregion, covering a vast 
extension of 6.5 million hectares of land in South America. This region is located 
between 37°S and 55°S, which include territories from southern Chile and Argentina 
(Morrone 2018). An important part of Andean region is the biodiversity hotspot of 
Central Chile (Myers 2000), later called Chilean Winter Rainfall-Valdivian Forests 
biodiversity hotspot (Mittermeier et  al. 2004). Ecologically, these ecosystems have 
no equivalent in the northern hemisphere and are highly conserved territories dis-
playing unique microclimates, creating favourable conditions for endemism (Luebert 
and Pliscoff 2019, 2022). Due to the close association between fungi, environment 
and flora, the Andean region forests can host a wide range of fungal biodiversity 
(Mueller et  al. 2007).

The southern Chilean and Argentinean Basidiomycota has attracted much atten-
tion because of its peculiar biogeographical connections with the southern land-
masses and because of its high levels of endemism of different fungal groups 
(Toledo et  al. 2016). A great portion of the Agaricomycetes species inhabiting 
Andean region ecosystems belongs to the orders Agaricales, Hymenochaetales, 
Polyporales and Russulales within the phylum Basidiomycota (Figure 1). Several 
of these species have been shown to produce biologically privileged natural 
products.

2.  Methodology

This review presents data on the chemical diversity of native and introduced 
Agaricomycetes collected and/or isolated from the Andean region. The information 
was collected from scientific databases and cover from 1966 up to 2022. The following 
electronic databases were used: SciFinder, Science Direct, Scopus, Web of Science and 
Google Scholar. The search terms used for this review included keywords, such as 
‘metabolites’, ‘Fungi’, ‘Andean’, ‘chemical’, ‘Chile’ and ‘Argentina’. Supplementary Tables 
S1 and S2 report the chemodiversity of Agaricomycetes collected in the Andean 
region of Argentina and Chile.

3.  Basidiomycota bioprospection from Chile and Argentina

The first mycological campaigns to explore fungal diversity in Southern South America 
took place in the XVIII century and was led by European naturalists (cf. Garrido et  al. 
1985; Gamundí and Amos 2007). After this, Claude Gay and Camille Montagne exten-
sively compiled the knowledge about Chilean macrofungi and lichens to the date, 
including Ascomycota and Basidiomycota (Montagne 1850, 1852). However, it was 
Carlo Luigi Spegazzini who led a systematic investigation regarding fungi from Andean 
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region in Argentina (Spegazzini 1880) and Chile (Spegazzini 1910, 1921). Also, in the 
second half of the twentieth century, the work of Rolf Singer, Meinhard Moser, Egon 
Horak and Norberto Garrido increased the knowledge about Agaricomycetes from 
Southern South America (Singer et  al. 1965; Singer 1969; Moser and Horak 1975; 
Horak 1979; Garrido 1988).

Figure 1.  Fungal diversity of Andean region.
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Palacios (1966) pioneered on incorporating the biological activity of Agaricomycetes 
collected in Chile. Then, several efforts to investigate the Agaricomycetes species of Southern 
South America revealed a range of biological activities including antimicrobial (Garrido 
et al. 1982; Aqueveque et al. 2002, 2015), antifungal (Schalchli et al. 2011, 2015; Aqueveque 
et  al. 2016; Otto et  al. 2016), antioxidant (De Bruijn et  al. 2008; Torres et  al. 2016, 2019; 
Albornoz et  al. 2022), neuroprotection (González-Ramírez et  al. 2018; Cabrera-Pardo et  al. 
2019) and structural determination of natural products (Clericuzio et  al. 2004; Aqueveque 
et  al. 2006; Wu et  al. 2011; Alarcón et  al. 2013; Choi et  al. 2013; Reinoso et  al. 2013; 
Riquelme et  al. 2020). In Argentina, main studies focused on the nutritional, chemical and 
antioxidant aspects of fungal extracts (Di Anibal et al. 2015; Postemsky and Curvetto 2015; 
Toledo et  al. 2016; Molares et  al. 2020; Gallo et  al. 2022; Rugolo et  al. 2022).

The discovery of new fungal taxa with biological applications and medicinally 
relevant natural products have been a prolific niche for drug development endeavors 
(Abraham 2001; Dai et  al. 2010; Spiteller 2015; Stadler and Hoffmeister 2015). Due 
to the unique biodiversity and climate conditions, the central Chilean, Subantarctic 
and Patagonian subregion, located in the Andean region are privileged ecosystems 
where a vast new fungal species and sophisticated chemical structures with broad 
applications are yet to be discovered (Aqueveque et  al. 2017; Rosenberger et  al. 
2018). Overall, we report a total of 147 fungal species of Agaricomycetes. However, 
only 21 of them are reported with chemical and/or bioactivity studies. An extended 
list of fungi identified in southern South America is shown is Supplementary table 1.

4.  Agaricales Underw

Globally, this order has 13,233 spp. and 33 families (Kirk et  al. 2008). Amanita muscaria 
(L.) Lam. (Deja et  al. 2014) and Agaricus bisporus (J.E.Lange) Imbach (Muszyńska et  al. 
2017) are well known species worldwide, with representatives of each genus native 
to southern South America and naturalised introduced species. The genus Cortinarius 
(Pers.) Gray is an ectomycorrhizal fungus, commonly found in Nothofagus forests in 
southern South America (Moser and Horak 1975; Horak 1979; Garrido 1988; Arnold 
et  al. 2012). A substantial number of the species in this group are edible or have 
biotechnological properties (Li et  al. 2021a).

In southern South America, the Agaricales order constitute more than 50% of the 
taxa that has been chemically and biologically investigated. This is probably due to 
their conspicuousness and are distributed in 19 families. Belonging to the Agaricaceae 
Chevall. family, Agaricus arvensis Schaeff and Macrolepiota bonaerensis (Speg.) Singer 
have shown antibacterial activity and Agaricus augustus Fr. has been used for the 
biotransformation of pesticides (Donoso et  al. 2008). Cortinarius xiphidipus M.M. Moser 
& E. Horak (Cortinariaceae) has been subjected to chemical studies to determine 
steroid composition. Additionally, biological studies have been performed to assess 
the cytotoxic ability of this fungal strain (Torres et  al. 2017). For Hymenogastraceae 
Vittad., Gymnopilus junonius (Fr.) P.D., Gymnopilus purpuratus (Cooke & Massee) Singer 
and Hebeloma crustuliniforme (Bull.) Quél. have been evaluated in several assays 
including antibacterial, antifungal, cytostatic, antiviral and biotransformation of pes-
ticides (Garrido 1982; Aqueveque et  al. 2006; Donoso et  al. 2008; Schalchli et  al. 2011; 
Reinoso et  al. 2013; Schalchli et  al. 2015).

https://doi.org/10.1080/14786419.2023.2244126
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5.  Boletales E.-J. Gilbert

This order has 1316 spp. and 17 families, worldwide (Kirk et  al. 2008). The genus 
Boletus L. is known to have many edible species, including Boletus loyo Phillippi (syn. 
Butyriboletus loyo (Phillippi) Mikšík) present in Chile and Argentina (Singer and Digilio 
1957; Riquelme et  al. 2019; Li et  al. 2021a; Rivas-Ferreiro et  al. 2023). In vitro assays 
on Boletus aereus Bull., B. badius Pers., B. edulis Bull., B. pinophilus Pilát & Dermek have 
shown the presence of metabolites with antioxidant activity (Robaszkiewicz et  al. 
2010; Sun et  al. 2014). Suillus Gray is a biomedically relevant genus due to the bio-
synthesis of the terpene suillin, which has been reported to display several biological 
activities including cytotoxic, antitumoral and neuroprotective (in vivo and in vitro). 
Some common species from this genus are S. bellinii (Inzenga) Kuntze, S. granulatus 
(L.) Roussel and S. luteus (L.) Roussel (Fernández et  al. 2012; Jia et  al. 2014; Venditti 
et  al. 2017; Yan et  al. 2021; Andrade et  al. 2022).

In southern South America, seven families of Boletales have been identified and 
their antimicrobial activity evaluated: Boletaceae Chevall., Boletinellaceae P.M. Kirk, 
P.F. Cannon & J.C. David, Rhizopogonaceae Gäum. & C.W. Dodge, Sclerodermataceae 
Corda, Suillaceae Besl & Bresinsky and Tapinellaceae C. Hahn (Garrido et  al. 1982). 
Furthermore, Serpula himantioides (Fr.) P. Karst., from Serpulaceae Jarosch & Bresinsky, 
has been reported to synthesise pigments displaying UV-photoprotective abilities 
(Torres et  al. 2019). Species from Suillaceae are not only a food resource exploited 
in rural areas (Fernández et  al. 2012; Jacinto-Azevedo et  al. 2021), but also have been 
linked to the spread of invasive conifer species (Policelli et  al. 2019; Pildain et  al. 2021).

6.  Polyporales Gäum

Worldwide, Polyporales have 13 families and 1801 spp. (Kirk et  al. 2008). Common 
species of this order are Trametes versicolor (L.) Lloyd (Tišma et al. 2021) and Ganoderma 
australe (Fr.) Pat. (Richter et  al. 2015).

In southern South America, three families have been prospected. Grifola gargal 
Singer (Grifolaceae Jülich) is an endemic species of the Nothofagus forest of southern 
Chile and Argentina (Rajchenberg 2002) and has exhibited antioxidant properties as 
well as the ability to suppress osteoclasts formation (De Bruijn et  al. 2008, 2009; Wu 
et  al. 2011; Choi et  al. 2013; Harada et  al. 2015). In addition, T. versicolor (Polyporaceae) 
has shown remarkable abilities to biodegrade pesticides and it has also been reported 
to display antifungal activity (Donoso et al. 2008; Schalchli et al. 2015). Also, Ganoderma 
australe mycelial cultures isolated from Argentina have shown in vitro immunomod-
ulatory and antioxidant activities (Gallo et  al. 2022).

7.  Hymenochaetales Oberw

Globally, Hymenochaetales are represented by two families, 48 genera and 610 spp. 
(Kirk et  al. 2008). Some species from Hymenochaetaceae Donk are tree pathogens, 
white rot fungi, that seriously affect the forestry industry. For example, Phellinus 
igniarius (L.) Quél. and the genus Arambarria Rajchenb. & Pildain have been reported 
as pathogens of grapevine (Cloete et  al. 2016; Pildain et  al. 2017; Del Frari et  al. 2021). 
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There are also specimens with medicinal properties such as Fomitiporia punctata (P. 
Karst.) Murrill, which has shown antioxidant activities in vitro (Liu et  al. 2017). 
Furthermore, Inonotus obliquus (Fr.) Pilát produces inotodiol, a compound that has a 
remarkable cytotoxic activity in vitro (Zhao and Zheng 2021).

In southern South America, the family Hymenochaetaceae is the only representative 
addressed. Phylloporia boldo Rajchenb. & Pildain has recently been described as a 
new endemic species associated with Peumus boldus (Rajchenberg et al. 2019). Incipient 
efforts exploring the chemistry of this newly discovered species have revealed a range 
of chlorinated compounds (Riquelme et  al. 2020).

8.  Russulales kreisel ex P.M. Kirk, P.F. Cannon, & J.C. David

This order contains 12 families with 1767 spp. worldwide (Kirk et  al. 2008). Due to 
its relevant bioactivities known, Hericium erinaceus (Bull.) Pers. is one of the most 
studied fungi around the world (Thongbai et  al. 2015).

In southern South America, two families have been addressed. The first studies 
conducted on this order were on species from Russulaceae Lotsy. Specifically, Lactarius 
deliciosus (L.) Gray and Russula sardonia Fr. where their antibiotic activity was evaluated 
(Garrido et  al. 1982). Furthermore, ceramides and terpenes have been isolated from 
fruiting bodies of Russula austrodelica Singer (Alarcón et  al. 2013). From Stereaceae 
Pilát family, it is important to highlight Stereum hirsutum (Willd.) Pers., which has 
shown antioxidant (Torres et  al. 2016), antifungal (Aqueveque et  al. 2016) and anti-
bacterial activities (Aqueveque et  al. 2015). Finally, Aleurodiscus vitellinus (Lév.) Pat. 
(syn. Gloeosoma vitellium (Lév.) Bres.) has been reported to display remarkable neu-
roprotective activity in Alzheimer’s cell-based models (González-Ramírez et  al. 2018).

9.  Bioactive natural products from Agaricomycetes  
of the Andean region

In this section, we will focus on providing an overview of fungal natural products, 
characterised by NMR and X-ray crystallography, and their reported biological activity. 
Natural products identified by mass spectrometry are described in the Supplementary 
Material. Figure 2 shows natural products isolated from Agaricomycetes in the Andean 
region. Several furan containing natural products have been reported over the years 
(Figure 2(a)). González-Ramírez et  al. (2018) isolated a natural benzofuran, fomannoxin 
(1), from the Andean region fungus Aleurodiscus vitellinus. Fomannoxin showed remark-
able neuroprotective abilities while undetectable cytotoxic effects on PC12 cells. This 
fungal benzofuran displayed a concentration-dependent protection on the Aβ-induced 
toxicity on PC-12. Fomannoxin also showed beneficial effects on the frequency of 
cytosolic Ca2+ transients in rat hippocampal neurons. During the chemical studies of 
Hypholoma sublateritium, Aqueveque et  al. (2006) reported the presence of marasmal 
(2), a naphthofuran. Biological studies on marasmal revealed reasonable antimicrobial 
activity against Bacillus and Staphylococcus strains. NMR studies on Serpula himantioides 
revealed the presence of xerocomic acid (3), a red-orange pigment present in Boletales. 
Biological evaluation of xerocomic acid revealed high antioxidant capacity as well as 

https://doi.org/10.1080/14786419.2023.2244126
https://doi.org/10.1080/14786419.2023.2244126
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remarkable levels of photoprotection against UV-C radiation on HEK293 cell assays 
(Torres et  al. 2019). A range of furan containing terpenoids (4–6) were characterised 
by Alarcón et  al. (2013) at the University of Bío-Bío in Chillán, Chile. Chlorinated 
compounds (Figure 2(b)) have also been isolated from Andean region fungi. Riquelme 
et  al. (2020) investigated the chemistry of Phylloporia boldo, a recently discovered 
fungi, and found several chlorinated hydroquinone metabolites including drosophilin 
A (7), chloroneb (8) and drosophilin A methyl ether (9). Other chlorinated metabolites 
such 3-chloro-p-anisaldehyde (10) and 3,5-dichloro-4-metoxi-benzyl alcohol (11) have 
been isolated from Hypholoma capnoides and Hypholoma fasciculare, respectively 
(Aqueveque et  al. 2006). Polyynes and lactones scaffolds have also been identified in 
Basidiomycota from the Andean region (Figure 2(c)). The propargyl alcohols 12 and 
13 were isolated from Gymnopilus junonius and showed interesting antimicrobial and 
antifungal activities (Aqueveque et  al. 2006). Vibralactone (14) and vibralactone B (15) 
were isolated from Stereum hirsutum and also displayed antimicrobial activities 
(Aqueveque et  al. 2015). A range of terpenes has also been reported (Figure 2(d)). 
Gargalols A-C (16-18) were characterised from Grifola gargal, an edible mushroom 
from the south of Chile and Argentina (Wu et  al. 2011). These sterols showed bene-
ficial effects against osteoporosis. Fasciculol E (19), a lanostane triterpenoid conjugated 
to a depsipeptide unit, was isolated from fruiting bodies of Pholiota spumosa (Clericuzio 
et  al. 2004). Naematolon (20), isolated from Hypholoma fasciculare, showed modest 
antimicrobial activities (Aqueveque et  al. 2006). Several himanimides (Figure 2(e), 
21–24) were reported from cultures of Serpula himantioides (Aqueveque et  al. 2006). 
Antimicrobial evaluation of these molecules showed promising results. Polyphenolic 
compounds (25) were also observed in Stereum hirsutum (Aqueveque et  al. 2015). 

Figure 2. A  selection of natural products from Agaricomycetes isolated from Andean region 
forests.
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Grifola gargal also produces novel sphingosines (26) with remarkable osteoclast-forming 
suppressing activity (Choi et  al. 2013). Finally, (E)-2,3-dehydroputrescine-
1,4-dicinnamamide (27) was isolated from fruiting bodies of Pholiota spumosa and 
characterised by X-ray crystallography (Clericuzio et  al. 2004). An extended list of 
bioactive molecules, identified by mass spectrometry and isolated from Andean region 
fungi is displayed in Supplementary Tables 2 and 3.

10.  Conclusion

This review gathers information regarding Agaricomycetes investigated from the Andean 
region, which comprises large territories from Chile and Argentina (Morrone 2018). 
Basidiomycota are still a prolific source of bioactive fungal natural products (Reck and 
Spiteller 2015). southern South America represents a distinct biogeographic zone with 
endemic flora that creates the perfect conditions for the development of unique fungi 
species with relevant biomedical activities. To the best of our knowledge, this review 
covers all the chemical studies about Basidiomycota fungi investigated from southern 
South America. Herein, we report a total of 147 fungal species of Agaricomycetes. 
However, natural product chemistry and/or bioactivity studies are reported only in 21 
of them. Fungal species from the following orders have been reported in southern 
South America: Agaricales, Boletales, Hymenochaetales, Polyporales and Russulales. In 
terms of fungal natural scaffolds, several furans, chlorinated phenol derivatives, polyenes, 
lactones, terpenes and himanimides have been reported. These natural products dis-
played a range of biological activities including antimicrobial, antifungal, neuroprotective 
and osteoclast-forming suppressing effects. Finally, more efforts are needed to uncover 
the biomedically relevant chemical space in fungi from southern South America. These 
endeavors will pave the path to open new venues for drug development campaigns.
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